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Abstract

The purpose of this paper is to give, on one hand, a mathematical exposition of the main topological
and geometrical properties of geometric transitions, on the other hand, a quick outline of their principal
applications, both in mathematics and in physics.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Geometric transitions; Conifold transitions; Mirror symmetry; Reid’s fantasy; Vacuum degeneracy problem;

Reverse transition; Toric degenerations; Moduli spaces of Calabi–Yau three-folds

Contents

1. Geometric transitions: definition and the basic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1942
1.1. Calabi–Yau varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1942
1.2. Geometric transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1943
1.3. The basic example: the conifold in P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1944

2. Local geometry and topology of a conifold transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1946
2.1. The local topology of a node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1946
2.2. Local geometry of the resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1947
2.3. Local geometry of the smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1949
2.4. Local topology of a conifold transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1950

3. Global geometry and topology of a conifold transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1950
3.1. What about more general geometric transitions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1959

� Research partially supported by the Italian PRIN project “Geometria delle Varietà Algebriche” (GVA) and by the
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A geometric transition is a birational contraction followed by a complex smoothing. This
process connects two smooth, topologically distinct, Calabi–Yau three-folds. For this reason
geometric transitions attracted the interest of both mathematician and physicists.

From the mathematical point of view, the property of changing topology candidates geometric
transitions as the three-dimensional analogous of analytic deformations between K3 surfaces.
More precisely, K3 projective surfaces having different sectional genus are linked by analytic
deformations, showing that their moduli space is actually connected. Analogously geometric
transitions may be the right way to give a notion of “connectedness” to the “moduli space”
of Calabi–Yau three-folds. This is essentially the famous Reid’s fantasy [62] founded on deep
speculations due to Clemens [21], Friedman [27], Hirzebruch [38] and Werner [77].

On the other hand, in physics, the same property provides a mathematical tool to connect
topologically distinct compactifications to four dimensions of 10-dimensional type II super-string
theory vacua. This fact was firstly observed by Candelas et al. [17,31,32,18,19]. The physical
interpretation of a geometric transition connecting two topologically distinct string vacua was
given later, in 1995, by Strominger [68], at least in the case of a conifold transition i.e. a geometric
transition whose associated birational contraction generates at most ordinary double points. After
this pivotal paper other geometric transitions have been physically understood [12,41,13].

For many geometric transitions, the induced change in topology can be summarized by saying
that a transition increases complex moduli and decreases Kähler moduli. Since mirror symme-
try exchange complex and Kähler moduli, it seemed natural to conjecture the existence of a
reverse transition connecting mirror partners of a couple of Calabi–Yau three-folds linked by a
given transition [51]. Reverse transitions have been then revealed useful tools for producing, at
least conjecturally, mirror constructions extending, via toric degenerations, the Batyrev mirror
symmetry between Calabi–Yau three-folds embedded in toric varieties [8,9,7].
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In physics, geometric transitions have newly been in the spot light as the geometric set up of
recently conjectured open/closed string dualities [29,56].

The present work is meant to give on one hand a mathematical exposition of the main topolog-
ical and geometrical properties of a transition. This is the program of Sections 1–4: except for the
latter, where some notion of deformation theory in geometry is needed, these sections are devoted
to present a, as much as possible, self-contained treatment, for graduate students and beginners.
For this reason many well-known results or properties are developed in details like some example
(see Section 1.3 and Example 3.1) or Theorem 3.3. In particular the latter is intended to give
a complete account of the change in topology induced by a conifold transition. Its content was
already known 20 years ago to Clemens, and then to many other mathematicians and physicists,
but I was not able to find, in the literature, a complete statement and a clear proof of all of the
results mentioned there. For this reason I preferred to rewrite here an elementary proof requiring
no more than basic facts in algebraic topology and geometry.

On the other hand Sections 5–7 give a quick outline of some applications of geometric tran-
sitions both in mathematics and in physics. Here the reader is clearly required to know basic
facts and definitions of these topics, although I tried to give references of the original papers and,
sometimes, of extended surveys treating the mentioned subjects.

The paper is organized as follows.
Section 1 is devoted to give definition and examples of geometric transitions. In particular the

fundamental example of a non-trivial conifold transition involving a quintic three-fold in P4 is
developed in detail.

Section 2 is a revised version of some of the “topological considerations” given by Clemens
[21], which allow to locally think a conifold transition as a surgery in topology (Proposition 2.10).

In Section 3 the global change in topology induced by a conifold transition is carefully stud-
ied, relying each other homological invariants of all of the three poles of a conifold transition
(Theorem 3.3). This section ends up with some similar considerations for more general geometric
transitions, essentially due to Namikawa and Steenbrink [55].

Section 4 gives an outline of results and techniques needed to perform a (actually incomplete)
classification of geometric transition. Main results are here due to Friedman, Gross and Namikawa.

The remaining sections are dedicated to describe some fundamental applications of geometric
transitions. Section 5 describes how geometric transitions are conjecturally employed, in mathe-
matics, to think of the Calabi–Yau three-folds moduli space as “irreducible” and, in physics, to
“unify” type II super-string compactified vacua. In Section 6 a quick account of the role played
by geometric transitions in mirror symmetry is given, starting from the key concept of reverse
transition. In Section 7 some further more recent applications are finally mentioned.

1. Geometric transitions: definition and the basic example

1.1. Calabi–Yau varieties

Definition 1.1. Let Y be a smooth, complex, projective variety with dim Y ≥ 3. Y will be called
a Calabi–Yau variety if

(1) ∧nΩY =: KY ∼= OY ,
(2) hp,0(Y ) = 0 ∀0 < p < dimY .

A three-dimensional Calabi–Yau variety will be also called a Calabi–Yau three-fold.
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Remark 1.2.

(1) There are a lot of more or less equivalent definitions of Calabi–Yau varieties coming from:

• differential geometry: the differential geometric concept of a compact, Kähler manifold admit-
ting a Ricci flat metric (Calabi conjecture and Yau theorem),

• theoretical physics: the physical concept of a Kähler, three-dimensional complex, compact
manifold admitting a flat, non-degenerate, holomorphic three-form.

(see [40] for a complete description of equivalences and implications).

(2) In the algebraic context, the given definition of Calabi–Yau variety is the generalization of
the following geometric objects

• One-dimensional: smooth elliptic curves,
• Two-dimensional: smooth K3 surfaces.

(3) With the dimensional bound dim Y ≥ 3, the given definition of Calabi–Yau variety is equiv-
alent to require that Y is a Kähler, compact, manifold whose holonomy group is a subgroup
of SU(dimY ) (cf. [40]).

Example 1.3.

(1) Smooth hypersurfaces of degree n+ 1 in Pn (use adjunction formula and the Lefschetz
hyperplane theorem).

(2) Smooth hypersurfaces (if exist!) of a weighted projective space P(q0, . . . , qn) of degree
d =∑n

i=0 qi.
(3) The general element of the anti-canonical system of a sufficiently good four-dimensional toric

Fano variety (see [5]).
(4) Suitable complete intersections . . . (iterate the previous examples).
(5) The double covering of P3 ramified along a smooth surface of degree 8 in P3 (octic double

solid).

1.2. Geometric transitions

Definition 1.4 (cf. [51,22,30]). Let Y be a Calabi–Yau three-fold and φ : Y → Ȳ be a birational
contraction onto a normal variety. If there exists a complex deformation (smoothing) of Ȳ to a
Calabi–Yau three-fold Ỹ , then the process of going from Y to Ỹ is called a geometric transition
(for short transition) and denoted by T (Y, Ȳ , Ỹ ) or by the diagram

A transition T (Y, Ȳ , Ỹ ) is called trivial if Ỹ is a deformation of Y.
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Remark 1.5.

(1) Trivial transitions may occur: e.g. consider Example 4.6 in [79], where φ admits an elliptic
scroll as exceptional divisor and contracts it down to an elliptic curve C.

(2) It is clearly possible to extend the transition process to any dimension ≥3. Note that it is not
possible to realize non-trivial transitions in dimension 1 (i.e. between elliptic curves).

(3) The transition process was firstly (locally) observed by Clemens in the study of double
solids V admitting at worst nodal singularities [21]: in his Lemma 1.11 he pointed out
“the relation of the resolution of the singularities of V to the standard S3 ×D3 to S2 ×D4
surgery”.

Definition 1.6. A transition T (Y, Ȳ , Ỹ ) is called conifold if Ȳ admits only ordinary double points
(nodes) as singularities, i.e. singular points whose tangent cones are singular hyperquadrics of
rank dimX+ 1 (precisely non-degenerate cones).

1.3. The basic example: the conifold in P4

The following example, given in [34], shows that non-trivial (conifold) transitions occur when
dimX ≥ 3.

Let Ȳ ⊂ P4 be the singular hypersurface given by the following equation

x3g(x0, . . . , x4) + x4h(x0, . . . , x4) = 0 (1)

where g and h are generic homogeneous polynomials of degree 4. Ȳ is then the generic quintic
three-fold containing the plane π : x3 = x4 = 0. Then the singular locus of Ȳ is given by

Sing(Ȳ ) = {[x] ∈ P4|x3 = x4 = g(x) = h(x) = 0} (2)

Proposition 1.7. Sing(Ȳ ) is composed by 16 nodes.

Proof. Letp ∈ Sing(Ȳ ). We have to write down the local equation of p. Assumep = [1, 0, 0, 0, 0]
and intersect Ȳ with the affine open subset of P4

U0 := {[x] ∈ P4|x0 �= 0}
Set zi := xi/x0 , i = 1, . . . , 4. Then Ȳ ∩ U0 is described by the following affine equation

z3g̃(z) + z4h̃(z) = 0 (3)

where x4
0g̃ = g and x4

0h̃ = h. Besides p is the origin of U0.
Since g, h are generic we can assume that the polynomial (holomorphic) maps g̃, h̃ : C4 → C

are submersive at the origin and we can find a holomorphic chart (U, z) centered in p = 0 ∈ C4

and such that

Ū := Ȳ ∩ U : z3z1 + z4z2 = 0 (4)

Then p is a node. �

Proposition 1.8 (The resolution). Sing(Ȳ ) can be simultaneously resolved and the resolution
φ : Y → Ȳ is a small blow up such that Y is a smooth Calabi–Yau three-fold.
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Proof. Blow up P4 along the plane π : x3 = x4 = 0. We get a birational morphism

φ̂ : P̂4 → P4

whose exceptional divisor is a P1-bundle over P2. Let Y be the proper transform of Ȳ (i.e. the
closure in P̂4 of φ̂−1(Ȳ \ π)). Since P̂4 is the hypersurface of bi-homogeneous equation y0x4 −
y1x3 = 0 in P4(x) × P1(y), then Y is the following complete intersection

y0x4 − y1x3 = 0, y0g(x) + y1h(x) = 0 (5)

and we get that

• Y is smooth,
• φ := φ̂|Y : Y → Ȳ is an isomorphism outside of Sing(Ȳ ),
• ∀p ∈ Sing(Ȳ ), φ−1(p) ∼= P1.

Hence φ : Y → Ȳ is a birational resolution called small blow up due to the dimension of its
exceptional locus (1 < dimY − 1 = 2).

To prove that Y is Calabi–Yau recall that φ̂ is a blow up, hence

K
P̂4 ≡ φ̂∗(KP4 ) + (4 − 2 − 1)E ≡ −5φ̂∗(H) + E

where E is the exceptional divisor of φ̂ and H is the hyperplane of P4. Then the adjunction formula
gives

KY ∼= K
P̂4 ⊗ O

P̂4 (Y ) ⊗ OY
∼= OY (E|Y ) ∼= OY

Moreover the Lefschetz hyperplane theorem and the Künneth formula give

H1(Y,C) ∼= H1(P̂4,C) ∼= H1(P4 × P1,C) = 0

hence h1,0(Y ) = 0. On the other hand the Serre duality theorem allows to conclude that

H2(Y,OY ) ∼= H1(Y,KY ) ∼= H1(Y,OY )

hence h2,0(Y ) = h0,2(Y ) = h0,1(Y ) = h1,0(Y ) = 0. �

Proposition 1.9 (The smoothing). Ȳ admits the obvious smoothing given by the generic quintic
three-fold Ỹ ⊂ P4. In particular Ỹ cannot be a deformation of Y i.e. the conifold transition
T (Y, Ȳ , Ỹ ) is not trivial.

Proof. Apply again the Lefschetz hyperplane theorem and the Künneth formula to get the
following relations on the Betti numbers of Ỹ and Y

b2(Ỹ ) = b2(P4) = 1, b2(Y ) = b2(P4 × P1) = 2 (6)

Therefore Ỹ and Y cannot be smooth fibres of the same analytic family. �
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2. Local geometry and topology of a conifold transition

The present section will be essentially devoted to explain the basic argument given by Clemens
[21]. As a consequence we get that locally a conifold transition is described by a suitable surgery.

In this section we will always assume that T (Y, Ȳ , Ỹ ) is a conifold transition and p is a point
in Sing(Ȳ ), which means that it is a node.

2.1. The local topology of a node

Just like in the basic Example 1.3, we may assume that there exists a local chart (U, z) such
that p = 0 ∈ U. Denote Ū := Ȳ ∩ U, which has local equation in U given by

z1z3 + z2z4 = 0 (7)

Proposition 2.1. Topologically Ū is a cone over S3 × S2.

Proof. Change coordinates as follows

w1 = 1

2
(z1 + z3), w2 = i

2
(−z1 + z3),

w3 = 1

2
(z2 + z4), w4 = i

2
(−z2 + z4) (8)

to rewrite the local equation (7) as

4∑
j=1

w2
j = 0

Decompose the latter in real and imaginary parts by setting wj = uj + ivj . Then Ū is described
in R8(u, v) by the following two equations

4∑
j=1

u2
j −

4∑
j=1

v2
j = 0 (9)

4∑
j=1

ujvj = 0 (10)

Fix now a real positive radius ρ and consider the seven-sphere

S7
ρ :=

⎧⎨
⎩(u, v) ∈ R8|

4∑
j=1

u2
j +

4∑
j=1

v2
j = ρ2

⎫⎬
⎭

Cut then Ū to get Ūρ := Ū ∩ S7
ρ. Topologically Ū = ⊔ρ≥0 Ūρ and we get the claim by proving

that Ūρ ∼= S3 × S2.
At this purpose, note that Ūρ is described in R8 by the following equations

4∑
j=1

u2
j = ρ2 −

4∑
j=1

v2
j ,

4∑
j=1

v2
j = ρ2

2
,

4∑
j=1

ujvj = 0 (11)
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Then Ūρ can be fibred over the three-sphere S3
ρ/

√
2

:= {v ∈ R4|∑4
j=1 v

2
j = ρ2/2}. Precisely the

fibre over a point vo ∈ S3
ρ/

√
2

is given by

4∑
j=1

u2
j = ρ2

2
,

4∑
j=1

vojuj = 0

which is a two-sphere of radius ρ/
√

2.
The proof ends up by showing that the bundle Ūρ is actually a product. This fact follows by

observing that Ūρ is embedded in the tangent bundle to the three-sphere S3
ρ/

√
2

⊂ R4(v). In fact

the latter is embedded in R8(u, v) by the second and third equations in (11). To conclude restrict
to Ūρ the well-known trivialization TS3

ρ/
√

2
∼= S3 × R3. �

2.2. Local geometry of the resolution

To resolve the node recall Proposition 1.8 of the basic example. Precisely look at the proper
transform Û of Ū in the blow up of the local chart (U, z) ∼= C4(z) along the plane z3 = z4 = 0.
Û is then described in C4 × P1 by the following equations

y0z4 − y1z3 = 0, y0z1 + y1z2 = 0 (12)

Proposition 2.2. There is a diffeomorphism Û ∼= R4 × S2

Proof. Topologically it is not difficult to observe that Û is an R4-bundle over P1
C. In fact by split-

ting zj in real and imaginary parts, Eq. (12) give rise to four linear equations in R8 parameterized
by [y0, y1] ∈ P1

C.
To construct the diffeomorphism introduce the coordinates change given by (8) and split the

new coordinates in real and imaginary parts: wj = uj + ivj . Eq. (12) of Û can then be rewritten
in R8(u, v) × P1

C in the following matricial form

u = A([y0, y1])v (13)

where

A([y0, y1]) :=

⎛
⎜⎜⎜⎜⎝

0 |y0|2 − |y1|2 2 Im(ȳ0y1) 2 Re(ȳ0y1)

−|y0|2 + |y1|2 0 −2 Re(ȳ0y1) −2 Im(ȳ0y1)

−2 Im(ȳ0y1) 2 Re(ȳ0y1) 0 −|y0|2 + |y1|2
−2 Re(ȳ0y1) 2 Im(ȳ0y1) |y0|2 − |y1|2 0

⎞
⎟⎟⎟⎟⎠ (14)

We will refer to the matrix A as the Clemens’ matrix: in fact it is the same matrix appearing in
formula (1.18) of [21]. For any [y] ∈ P1

C, one can easily check that A[y] ∈ SO(4) and moreover
it is antisymmetric i.e. tA[y] + A[y] = 0.

A diffeomorphism Φ : Û ∼= R4 × P1
C is then given by

Φ−1 : R4 × P1
C → Û ⊂ R4 × R4 × P1

C, (v, [y]) �→ (A[y]v, v, [y]) (15)

The proof ends up by the usual identification P1
C

∼= S2. �
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Remark 2.3. Just like in the basic Example 1.3, the restriction of the blow up of U = C4 along
the plane z3 = z4 = 0 gives rise to a birational map

ϕ : Û → Ū

which is a small blow up. Precisely ϕ is biregular over the complement of the origin in Ū and
ϕ−1(0) = P1

C. Then it induces a diffeomorphism

Û \ ϕ−1(0)
ϕ→∼= Ū \ {0}

Recalling Proposition 2.1, Ū \ {0} ∼= (R4) \ {0} × P1
C and it is natural to ask what is the relation

between ϕ and Φ. Thanks to the Clemens matrix’s properties we get that

Φ|Û\ϕ−1(0) = ϕ|Û\ϕ−1(0) (16)

andΦ is an extension of ϕ over the exceptional fibre i.e. the following commutative diagram holds

To prove this fact it suffices to check that (u, v) = (Av, v) satisfies the real equations (9) of Ū, for
any v �= 0. In fact

|u|2 − |v|2 = tvtAAv− tvv = 0

since A is orthogonal. On the other hand

4∑
j=1

ujvj = tvtAv = −tvAv = 0

since A is antisymmetric and it induces an alternating bilinear form.

Proposition 2.4. Û can be identified with the total space of the rank 2 holomorphic vector bundle
OP1 (−1) ⊕ OP1 (−1) over the exceptional fibre P1

C = ϕ−1(0). In particular Û admits a natural
complex structure.

Proof. Since Û is the proper transform of Ū in the small blow up of U, it can be identified with the
total space of the normal bundle of the exceptional fibre NÛ|P1 . The latter is a holomorphic vector

bundle of rank 2 over the exceptional fibre P1
C. By the Grothendieck theorem it splits as follows:

NÛ|P1
∼= OP1 (d1) ⊕ OP1 (d2)

Choose two local charts on S2 ∼= P1
C around the north and the south poles, respectively.

Let τ := y0/y1 and σ := y1/y0 be the associated local coordinates. Lifting these charts to
OP1 (d1) ⊕ OP1 (d2) means that we can choose two local parameterizations

(τ; t1, t2), (σ; s1, s2)

patching along the fibre over the fixed point (y0 : y1) = (τ : 1) = (1 : σ) as follows:

si = τ−di ti
where τ−di represents the transition function in GL(1,C) = C∗.
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Eq. (12) of Û allow us to set

t1 = z1, t2 = z4; s1 = −z2, s2 = z3

Then

s1 = −z2 = y0

y1
z1 = τt1, s2 = z3 = y0

y1
z4 = τt2

and we get that d1 = d2 = −1. �

2.3. Local geometry of the smoothing

Recalling the real equations (9) of Ū, a local smoothing of the node is given by the 1-parameter
family f : U → R where

Ut := f−1(t) :

{∑4
j=1 u

2
j −∑4

j=1 v
2
j = t∑4

j=1 ujvj = 0
(17)

Let Ũ := Ut0 for some t0 ∈ R, t0 > 0.

Proposition 2.5. Ũ is diffeomorphic to the cotangent bundle T ∗S3 of the three-sphere. In par-
ticular Ũ ∼= S3 × R3.

Proof. T ∗S3 can be embedded in R8(q, p) by the standard equations
4∑
j=1

q2
j = 1,

4∑
j=1

qjpj = 0

The diffeomorphism Ψ : Ũ ∼= T ∗S3 is then defined by setting

qj = uj√
t0 +∑j v

2
j

, pj = vj

The proof concludes by applying the standard trivialization T ∗S3 ∼= S3 × R3. �
Remark 2.6. The vanishing cycle of the smoothingf : U → R is given by the family of embedded
three-spheres S → R defined by

St :=
{ |u|2 − t = v1 = · · · = v4 = 0 if t ≥ 0

|v|2 − t = u1 = · · · = u4 = 0 if t ≤ 0
(18)

Clearly S0 = {0} ⊂ Ū. Define S̃ := St0 . Recalling the diffeomorphism Ψ of the previous propo-
sition we get that Ψ (S̃) is the 0-section of the cotangent bundle T ∗S3.

Definition 2.7. Let L be a submanifold of a given symplectic manifold (M,ω). L is called La-
grangian if

(1) 2 dimR L = dimRM
(2) ∀p ∈ L,∀X, Y ∈ TpM,ωp(X, Y ) = 0.

Example 2.8. The cotangent bundle T ∗M of a given manifold M admits the canonical sym-
plectic structure given by ω := dϑ, where ϑ is the Liouville one-form. The 0-section of T ∗M is
a Lagrangian submanifold with respect to the canonical symplectic structure.



1950 M. Rossi / Journal of Geometry and Physics 56 (2006) 1940–1983

Proposition 2.9. Ũ admits a natural symplectic structure and the vanishing cycle S̃ is a La-
grangian submanifold.

Proof. Let ω be the canonical symplectic structure on T ∗S3. Then Ψ∗(ω) gives the natural
symplectic structure to Ũ. By Remark 2.6 and Example 2.8 we get that

Ψ∗(ω)|S̃ = ω|S3 = 0 �

2.4. Local topology of a conifold transition

Proposition 2.10 ([21, Lemma 1.11]). Let Dn ⊂ Rn be the closed unit ball and consider

• S3 ×D3 ⊂ S3 × R3 ∼=Ψ−1
Ũ,

• D4 × S2 ⊂ R4 × S2 ∼=Φ−1
Û.

Then D̃ := Ψ−1(S3 ×D3) and D̂ := Φ−1(D4 × S2) are compact tubular neighborhoods of the
vanishing cycle S̃ ⊂ Ũ and of the exceptional cycle P1

C ⊂ Û, respectively.
Consider the standard diffeomorphism

α′ : (R4 \ {0}) × S2 ∼=→ S3 × (R3 \ {0}), (u, v) �→
(
u

|u| , |u|v
)

and restrict it to D4 × S2. Since

∂(D4 × S2) = S3 × S2 = ∂(S3 ×D3)

observe that α′|∂(D4×S2) = id|S3×S2 . Hence α′ induces a standard surgery from R4 × S2 to S3 ×
R3.

Then Ũ can be obtained from Û by removing D̂ and pasting in D̃, by means of the diffeomor-
phism α := Ψ−1 ◦ α′ ◦Φ.

Proof. The situation is described by the following commutative diagram

which implies that α induces a diffeomorphism from ∂(D̃) to ∂(D̂). The claim follows
immediately. �

3. Global geometry and topology of a conifold transition

Let T (Y, Ȳ , Ỹ ) be a conifold transition. Then, by definition and the local analysis of the previous
section we know that:

• Sing(Ȳ ) = {p1, . . . , pN}, where pi is a node;
• there exists a simultaneous resolution φ : Y → Ȳ which is a birational morphism contracting

N rational curves E1, . . . , EN ;
• Ỹ admits N vanishing cycles S1, . . . , SN which are three-spheres.
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Two natural questions then arise:

(1) Are the homology classes [E1], . . . , [EN ] ∈ H2(Y,Z) linearly independent? Which is: are
the exceptional curves of φ homologically independent?

(2) Same question about [S1], . . . , [SN ] ∈ H3(Ỹ ,Z), i.e. are the vanishing cycles homologically
independent?

The answer is no to both questions!

Example 3.1. Consider the example given in 1.3 of the conifold in P4. Then Ȳ = {x3g+ x4h =
0} ⊂ P4, N = 16, the resolution Y contains 16 exceptional rational curves and the smoothing Ỹ
contains 16 vanishing spheres.

For question (1) notice that if [E1], . . . , [E16] would be independent then we would have

b2(Y ) = b2(Ỹ ) + 16

which is clearly contradicting (6).
On the other hand, for question (2) let us compare b3(Y ) and b3(Ỹ ).

Claim 3.2. b3(Y ) = 174, b3(Ỹ ) = 204; then b3(Ỹ ) − b3(Y ) = 30.

Proof. In physics literature, this proof is often realized by invoking the local smoothness of
the complex moduli space of a Calabi–Yau three-fold Y, hence the Bogomolov–Tian–Todorov
theorem (see [14,71,73,58]; see also Section 6.1.1). Then it is well defined a tangent space, to
such a moduli space, canonically identified with H1(TY ), via the Kodaira–Spencer map. The
Calabi–Yau condition gives then

b3(Y ) = 2 + 2h2,1(Y ) = 2 + 2h1(TY )

The statement follows, for both Y and Ỹ , by counting their moduli (see [34]).
Actually proving the claim do not need local smoothness of moduli spaces, which is a very

deeper concept. In the following we present a more (standard) elementary proof. Although com-
putationally more intricate than the previous one, the following method has the advantage to apply
to more general situations: in fact it is not easy to count moduli of a general Calabi–Yau three-fold,
even in the case of a complete intersection.

Let start to consider Ỹ which is the easiest case of a projective hypersurface. In this case there
are many methods to compute h2,1(Ỹ ): e.g. it is possible to compute directly h1(TY ) by Poincaré
residues (see [35]) and to end up by using Calabi–Yau condition. Here is the most elementary
procedure to compute h1(TY ).

Since NỸ |P4 ∼= OP4 (5) ⊗ OỸ =: OỸ (5), the tangent sheaf exact sequence gives

0 → TỸ → TP4 ⊗ OỸ → OỸ (5) → 0

and the associated cohomology long exact sequence starts as follows:

0 → H0(TỸ ) → H0(TP4 ⊗ OỸ ) → H0(OỸ (5)) → H1(TỸ ) → H1(TP4 ⊗ OỸ ) → (19)

All needed information can then be deduced by the cohomology associated with the Euler exact
sequence

0 → OỸ → OP4 (1)⊕5 → TP4 ⊗ OỸ → 0 (20)
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and with the following tensor product, by OỸ (5), of the structure sheaf exact sequence of Ỹ ⊂ P4

0 → OỸ → OP4 (5) → OỸ (5) → 0 (21)

In fact (20) gives

0 → C → H0(OP4 (1))⊕5 → H0(TP4 ⊗ OỸ ) → H1(OỸ )

→ H1(OP4 (1))⊕5 → H1(TP4 ⊗ OỸ ) → H2(OỸ ) → · · ·
Bott formulas

hq(ΩpPn (a)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
a+ n− p

a

)(
a− 1

p

)
for q = 0, 0 ≤ p ≤ n and a > p

1 for 0 ≤ p = q ≤ n and a = 0(
−a+ p

−a

)(
−a− 1

n− p

)
for q = n, 0 ≤ p ≤ n and a < p− n

0 otherwise

(22)

and the Calabi–Yau condition h1(OỸ ) = h2(OỸ ) = 0, allow then to conclude that

h0(TP4 ⊗ OỸ ) = 25 − 1 = 24, h1(TP4 ⊗ OỸ ) = 0

On the other hand the cohomology of (21) gives

0 → C → H0(OP4 (5)) → H0(OỸ (5)) → H1(OỸ ) → · · ·
Again Bott formulas (22) and Calabi–Yau condition imply that

h0(OỸ (5)) = 126 − 1 = 125

Since h0(TỸ ) = h0(Ω2
Ỹ

) = 0, the sequence (19) gives

h1(TỸ ) = 125 − 24 = 101

The previous argument do not apply to the resolution Y, since it is the complete intersection
given by the bi-homogeneous equations (5) in P1 × P4 =: P. In this case there is no more an
Euler sequence like (20), then it is better to directly compute h1(Ω2

Y ). At this purpose dualize the
tangent sheaf sequence to get

0 → N ∗
Y |P → ΩP ⊗ OY → ΩY → 0 (23)

where N ∗
Y |P := Hom(NY |P,OY ) = IY/I2

Y , being IY the ideal sheaf of Y ⊂ P. Then

N ∗
Y |P ∼= [OP(−1,−1) ⊕ OP(−1,−4)] ⊗ OY =: OY (−1,−1) ⊕ OY (−1,−4)

Since Y is Calabi–Yau, its canonical sheaf is trivial and the fourth exterior power of (23) gives the
following exact sequence

0 → OY (−2,−5) ⊗Ω2
Y → Ω4

P ⊗ OY → OY (−1,−1) ⊕ OY (−1,−4) → 0

This sequence, tensored by OP(2, 5), gives then rise to the following one

0 → Ω2
Y → Ω4

P(2, 5) ⊗ OY → OY (1, 4) ⊕ OY (1, 1) → 0 (24)
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from which it is possible to compute h1(Ω2
Y ) by passing to the associated long exact sequence in

cohomology. In fact, recalling the Calabi–Yau condition for Y, it follows that

0 → H0(Ω4
P(2, 5) ⊗ OY ) → H0(OY (1, 4)) ⊕H0(OY (1, 1))

→ H1(Ω2
Y ) → H1(Ω4

P(2, 5) ⊗ OY ) → · · · (25)

All needed information can then be obtained by suitable twists of the following structure sheaves
exact sequences of Y ⊂ P̂ ⊂ P

0 → OP(−1,−1) → OP → O
P̂

→ 0 (26)

0 → O
P̂

(−1,−4) → O
P̂

→ OY → 0 (27)

where P̂ is the blow up of P4 along the plane x3 = x4 = 0, whose equation in P is the former in
(5), and O

P̂
(−1,−4) := OP(−1,−4) ⊗ O

P̂
.

In fact the tensor product of (26) and (27) by Ω4
P(2, 5) gives

0 → Ω4
P(1, 4) → Ω4

P(2, 5) → Ω4
P(2, 5) ⊗ O

P̂
→ 0 (28)

0 → Ω4
P(1, 1) ⊗ O

P̂
→ Ω4

P(2, 5) ⊗ O
P̂

→ Ω4
P(2, 5) ⊗ OY → 0 (29)

The following Künneth formulas

hv(ΩuP(a, b)) =
⊕
p+r=u
q+s=v

[hq(Ωp
P1 (a)) · hs(Ωr

P4 (b))] (30)

and (22) applied to the cohomology long exact sequence of (28) give

h0(Ω4
P(2, 5) ⊗ O

P̂
) = h0(Ω4

P(2, 5)) − h0(Ω4
P(1, 4)) = 27, h1(Ω4

P(2, 5) ⊗ O
P̂

) = 0

Moreover the tensor product of (26) by Ω4
P(1, 1) gives

0 → Ω4
P → Ω4

P(1, 1) → Ω4
P(1, 1) ⊗ O

P̂
→ 0 (31)

whose cohomology attains the following results

h0(Ω4
P(1, 1) ⊗ O

P̂
) = h1(Ω4

P(1, 1) ⊗ O
P̂

) = 0

Therefore the cohomology of (29) allows to conclude that

h0(Ω4
P(2, 5) ⊗ OY ) = h0(Ω4

P(2, 5) ⊗ O
P̂

) = 27,

h1(Ω4
P(2, 5) ⊗ OY ) = h1(Ω4

P(2, 5) ⊗ O
P̂

) = 0 (32)

To compute h0(OY (1, 4)), consider the tensor product of (26) and (27) by OP(1, 4):

0 → OP(0, 3) → OP(1, 4) → O
P̂

(1, 4) → 0,

0 → O
P̂

→ O
P̂

(1, 4) → OY (1, 4) → 0

Again formulas (22) and (30) applied to the cohomology of the first sequence give

h0(O
P̂

(1, 4)) = h0(OP(1, 4)) − h0(OP(0, 3)) = 140 − 35 = 105

The cohomology of the second sequence allows to conclude

h0(OY (1, 4)) = 104 (33)
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Analogously for h0(OY (1, 1)) one has

0 → OP → OP(1, 1) → O
P̂

(1, 1) → 0,

0 → O
P̂

(0,−3) → O
P̂

(1, 1) → OY (1, 1) → 0

Then

h0(O
P̂

(1, 1)) = h0(OP(1, 1)) − h0(OP) = 10 − 1 = 9

and finally

h0(OY (1, 1)) = 9 (34)

Therefore, recalling (25), results (32)–(34) end up the proof giving

h1(Ω2
Y ) = (104 + 9) − 27 = 86 �

Actually the numbers of nodes in Ȳ , of maximally independent exceptional rational curves in
Y and of maximally independent vanishing cycles in Ỹ turn out to be deeply related. This fact
characterizes the global change in topology induced by a conifold transition, as explained in the
following theorem.

Theorem 3.3 (Refs. [21,62,75,72,55,52]). Let T (Y, Ȳ , Ỹ ) be a conifold transition and let

• N be the number of nodes composing Sing(Ȳ ),
• k be the maximal number of homologically independent exceptional rational curves in Y,
• c be the maximal number of homologically independent vanishing cycles in Ỹ .

Then:

(1) |Sing(Ȳ )| =: N = k + c;
(2) (Betti numbers) bi(Y ) = bi(Ȳ ) = bi(Ỹ ) for i �= 2, 3, 4, and

b2(Y ) = b2(Ȳ ) + k = b2(Ỹ ) + k

‖ ‖
b4(Y ) = b4(Ȳ ) = b4(Ỹ ) + k

b3(Y ) = b3(Ȳ ) − c = b3(Ỹ ) − 2c

where vertical equalities are given by Poincaré duality;
(3) (Hodge numbers)

h2,1(Ỹ ) = h2,1(Y ) + c, h1,1(Ỹ ) = h1,1(Y ) − k

Remark 3.4. Note that point (2) of the previous statement implies that the conifold Ȳ do not
satisfy Poincaré duality. The difference b4(Ȳ ) − b2(Ȳ ) = k is called the defect of Ȳ [55].

Remark 3.5. Point (3) in Theorem 3.3 has the following geometric interpretation: a conifold
transition increases complex moduli by the maximal number of homologically independent van-
ishing cycles and decreases Kähler moduli by the maximal number of homologically independent
exceptional rational curves.

The reader is referred to Section 6.1.1 for a deeper understanding, where the Calabi–Yau moduli
space’s structure will be quickly described.
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Proof of Theorem 3.3. Let us denote:

• P := Sing(Ȳ ) = {p1, . . . , pN}, the singular locus of Ȳ ;
• E := ⋃Ni=1 Ei, the exceptional locus of Y;
• S := ⋃Ni=1 Si, the vanishing locus of Ỹ .

The birational contraction φ : Y → Ȳ induces the isomorphism

φ : Y \ E ∼=→ Ȳ \ P (35)

On the other hand, for any i = 1, . . . , N, by Proposition 2.10 we can construct compact tubular
neighborhoods D̃i of the vanishing cycle Si in Ỹ and D̂i of the exceptional rational curve Ei in Y
and diffeomorphisms

αi : D̂i \ Ei
∼=→ D̃i \ Si

Since we can clearly assume that D̃i’s are all disjoint neighborhoods and the same for D̂i’s, the
composed morphisms φ ◦ α−1

i give diffeomorphisms

φ ◦ α−1
i : D̃i \ Si

∼=→ D̄i \ {pi} (36)

where D̄i := φ(D̂i). Set:

D̃ =
N⋃
i=0

D̃i, D̄ =
N⋃
i=0

D̄i

By the Ehresmann fibration theorem there exists a diffeomorphism

Ỹ \ D̃ ∼=→ Ȳ \ D̄
allowing to extend diffeomorphisms (36) to the following global one

ψ : Ỹ \ S ∼=→ Ȳ \ P (37)

• Step I. ∀i �= 2, 3 bi(Y ) = bi(Ȳ ) and

b2(Y ) = b2(Ȳ ) + k ⇔ b3(Ȳ ) = b3(Y ) +N − k.

LetT (Ûi, Ūi, Ũi) be the local conifold transition (notation as in Section 2) induced byT (Y, Ȳ , Ỹ )
around the node pi ∈ P and denote:
◦ Û := ⋃Ni=1 Ûi ⊂ Y , Y∗ := Y \ E, Û∗ := Û \ E,
◦ Ū := ⋃Ni=1 Ūi ⊂ Ȳ , Ȳ∗ := Ȳ \ P , Ū∗ := Ū \ P .
Then:
◦ Û∗ = Y∗ ∩ Û and Y = Y∗ ∪ Û,
◦ Ū∗ = Ȳ∗ ∩ Ū and Ȳ = Ȳ∗ ∪ Ū,
and we are in a position to apply Mayer–Vietoris machinery to the couples (Y∗, Û) and (Ȳ∗, Ū)
to get the following two long exact sequences in homology

· · · → Hi(Û
∗) → Hi(Y

∗) ⊕Hi(Û) → Hi(Y ) → Hi−1(Û∗) → · · · (38)

· · · → Hi(Ū
∗) → Hi(Ȳ

∗) ⊕Hi(Ū) → Hi(Ȳ ) → Hi−1(Ū∗) → · · · (39)
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By straight line homotopy we have

Hi(Û) ∼= Hi(E) ∼=
{

ZN if i = 0, 2

0 otherwise
(40)

as a consequence of Proposition 2.2 and

Hi(Ū) ∼= Hi(P) ∼=
{

ZN if i = 0

0 otherwise
(41)

as a consequence of Proposition 2.1. The diffeomorphism φ, given in (35), induces then the
following isomorphisms in homology

Hi(Û
∗) ∼= Hi(Ū

∗) ∼=
N⊕
i=1

Hi(S
3 × S2) ∼=

{
ZN if i = 0, 2, 3, 5

0 otherwise
(42)

and

Hi(Y
∗) ∼= Hi(Ȳ

∗) (43)

Introduce isomorphisms (40)–(43), as vertical arrows connecting sequences (38) and (39). The
Steenrod five-lemma gives then

∀i �= 2, 3, bi(Y ) = bi(Ȳ ) (44)

Moreover gluing the two sequences by identifying the isomorphic poles, they reduce to the
following diagram

(45)

Then we get the following relations on Betti numbers

b4(Y∗) − b4(Y ) + b3(Y∗) − b3(Y ) +N − (b2(Y∗) +N) + b2(Y ) = 0,

b4(Y∗) − b4(Y ) + b3(Y∗) − b3(Ȳ ) +N − b2(Ȳ∗) + b2(Ȳ ) = 0

and their difference gives

b2(Y ) − b2(Ȳ ) = b3(Y ) − b3(Ȳ ) +N

• Step II. ∀i �= 3, 4 bi(Ỹ ) = bi(Ȳ ) and

b3(Ỹ ) = b3(Ȳ ) + c ⇔ b4(Ȳ ) = b4(Ỹ ) +N − c

Let T (Ûi, Ūi, Ũi) be the local conifold induced near the node pi ∈ P , as before. Let us denote
◦ Ũ := ⋃Ni=1 Ũi ⊂ Ỹ , Ỹ∗ := Ỹ \ S, Ũ∗ := Ũ \ S.
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Then
◦ Ũ∗ = Ỹ∗ ∩ Ũ and Ỹ = Ỹ∗ ∪ Ũ
and Mayer–Vietoris sequence for the couple (Ỹ∗, Ũ) gives

· · · → Hi(Ũ
∗) → Hi(Ỹ

∗) ⊕Hi(Ũ) → Hi(Ỹ ) → Hi−1(Ũ∗) → · · · (46)

Proposition 2.5 and straight line homotopy give

Hi(Ũ) ∼= Hi(S) ∼=
N⊕
i=1

Hi(S
3) ∼=

{
ZN if i = 0, 3

0 otherwise
(47)

Moreover the diffeomorphismψ given in (37) induces the following isomorphisms in homology

Hi(Ũ
∗) ∼= Hi(Ū

∗) ∼=
N⊕
i=1

Hi(S
3 × S2) ∼=

{
ZN if i = 0, 2, 3, 5

0 otherwise
(48)

and

Hi(Ỹ
∗) ∼= Hi(Ȳ

∗) (49)

As before, apply the Steenrod five-lemma to conclude that

∀i �= 3, 4 bi(Ỹ ) = bi(Ȳ ) (50)

and glue sequences (39) and (46) to get the following diagram

(51)

Then we get the following relations on Betti numbers

b4(Ỹ∗) − b4(Ỹ ) +N − (b3(Ỹ∗) +N) + b3(Ỹ ) −N + b2(Ỹ∗) − b2(Ỹ ) = 0,

b4(Ỹ∗) − b4(Ȳ ) +N − b3(Ỹ∗) + b3(Ȳ ) −N + b2(Ỹ∗) − b2(Ỹ ) = 0

and their difference gives

b3(Ỹ ) − b3(Ȳ ) = b4(Ỹ ) − b4(Ȳ ) +N

• Step III. Let k and c be the same parameters defined in Steps I and II, respectively. Then

|Sing(Ȳ )| =: N = k + c := b2(Y ) − b2(Ȳ ) + b3(Ỹ ) − b3(Ȳ )
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By Poincaré duality

b2(Y ) = b4(Y ), b4(Ỹ ) = b2(Ỹ )

Recall then Steps I and II to get

b2(Y ) = b4(Y ) = b4(Ȳ ) = b4(Ỹ ) +N − c = b2(Ỹ ) +N − c

= b2(Ȳ ) +N − c = b2(Y ) − k +N − c

Hence N − k − c = 0.
• Step IV. k is the maximal number of homologically independent exceptional rational curves in

Y while c is the maximal number of homologically independent vanishing cycles in Ỹ .

Recall the diffeomorphisms φ and ψ, defined in (35) and (37), and consider the composition

ψ−1 ◦ φ : Y \ E ∼=→ Ỹ \ S (52)

Lefschetz duality ensures that

H6−i(Y \ E) ∼= Hi(Y,E), H6−i(Ỹ \ S) = Hi(Ỹ , S)

Then (52) gives

Hi(Y,E) ∼= Hi(Ỹ , S) (53)

Consider the long exact relative homology sequences of the couples (Y,E) and (Ỹ , S) and the
vertical isomorphisms given by (53)

(54)

By identifying the isomorphic poles and recalling (40) and (47) the previous long exact sequences
reduce to the following diagram:

(55)
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Set

I := Im[κ : ZN = H2(E) → H2(Y )]

Then k := rk(I) is the number of linear independent classes of exceptional curves inH2(Y ). Since

0 → I → H2(Y ) → H2(Ỹ ) → 0

is a short exact sequence, it follows that

b2(Y ) = b2(Ỹ ) + k

On the other hand set

K := ker[γ : ZN ∼= H3(S) → H3(Ỹ )]

Then N − c := rk(K) is the number of linear independent relations on the classes of vanishing
cycles in H3(Ỹ ). Since

0 → H4(Ỹ ) → H4(Y ) → K → 0

is a short exact sequence, it follows that

b4(Y ) = b4(Ỹ ) +N − c �

3.1. What about more general geometric transitions?

The local and global topology and geometry of a general geometric transition

can actually be very intricate, depending on the nature of Sing(Ȳ ) and on the geometry of the
exceptional locus of φ. For this reason no general results similar to Proposition 2.10 and Theorem
3.3 are known. Anyway, under some (strong) condition on Sing(Ȳ ), somewhat can be said.

First of all let us assume that Sing(Ȳ ) = {p1, . . . , pr} is composed only by isolated hypersurface
singularity.

In this case, given a one-parameter flat smoothing Y → ∆1 of the singular point pi, the local
topology of Y near pi is explained by the Milnor’s analysis [49]. Call B the union of all of the
Milnor’s fibres Bpi , which have the homology type of a bouquet of three-spheres. Interpolate the
relative homology long exact sequences of (Ȳ ,Sing(Ȳ )) and (Ỹ , B), like in step IV of the proof
of Theorem 3.3, to get the first part of the following theorem.

Theorem 3.6 ([55, Theorem (3.2)]). Let Ȳ be a normal projective three-fold with only isolated
hypersurface singularities, admitting a smoothing Ỹ . For any p ∈ Sing(Ȳ ) call m(p) := h3(Bp)
the Milnor number of p. Then the defect of Ȳ is related to Milnor numbers as follows:

k := b4(Ȳ ) − b2(Ȳ ) = b3(Ȳ ) +
∑

p∈Sing(Ȳ )

m(p) − b3(Ỹ ) (56)

Moreover if all of the singularities of Ȳ are rational then

W(Ȳ )/C(Ȳ ) := 〈Weil divisors of Ȳ〉Z/〈Cartan divisors of Ȳ〉Z
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is a finitely generated abelian group. In particular if h2(OȲ ) = 0 then

k = rk(W(Ȳ )/C(Ȳ ))

giving a further interpretation of the defect of Ȳ .

Since the Milnor fibre of a node p has the homology type of a single three-sphere, m(p) = 1
and (56) gives (1) and the right part of formulas (2) in Theorem 3.3.

The last part of the previous statement is proved by employing results of Dimca [24] and
Steenbrink [67].

Moreover Theorem 3.6, joint with results of Reid [60], allows to generalize Theorem 3.3 to
the case of a geometric transition whose birational contraction is a small one, as follows.

Theorem 3.7 ([55, Example (3.8)]). Let T (Y, Ȳ , Ỹ ) be a geometric transition whose bira-
tional contraction φ : Y → Ȳ is a composition of type I primitive contractions. Then SingȲ =
{p1, . . . , pr}, where pi is an isolated, rational singularity. Let Ci := φ−1(pi) and ni be the num-
ber of irreducible components of Ci. If k is the rank of the free abelian group generated inH2(Y )
by the homology classes of C1, . . . , Cr, then

b2(Ỹ ) = b2(Y ) − k, b3(Ỹ ) = b3(Y ) +
r∑
i=1

ni +
r∑
i=1

m(pi) − 2k

As far as I know, dropping assumptions on Sing(Ȳ ) leads to no more than interesting conjectures
and examples. The interested reader is referred to [52, Section 3 and Appendix A], for some
geometric and physical interpretation of parameters N, k, c for more general transitions, and to
[41] for a computation of these parameters in examples of transitions whose Ȳ admits non-isolated
singularities (see also Section 6.2).

4. Classification of geometric transitions

By definition, a general geometric (not necessarily conifold) transition T (Y, Ȳ , Ỹ ) is always
associated with a birational contraction of a Calabi–Yau three-fold Y to a normal variety Ȳ . Then
the ingredients of a classification are the following:

(1) to classify the birational contractions φ : Y → Ȳ which may occur,
(2) among them, to select those admitting a smoothable target Ȳ .

Let us start with the first point of our program.

4.1. A little bit of Mori theory for Calabi–Yau three-folds

Let Y be a Calabi–Yau three-fold and consider the Picard group

Pic(Y ) := 〈invertible sheaves〉Z/isomorphism (∼=),

∼= 〈divisors〉Z/linear equivalence (≡)

Remark 4.1. There is a canonical isomorphism

Pic(Y ) ∼= H2(Y,Z) (57)
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In fact, since Y is smooth, it is well known that Pic(Y ) ∼= H1(Y,O∗
Y ). The long exact cohomology

sequence associated with the exponential sequence

0 → Z → O exp→O∗ → 1

gives the claim as a consequence of the Calabi–Yau condition h1(OY ) = h2(OY ) = 0.

The Kleiman space is the following real vector space

H2(Y,R) ∼= H2(Y,Z) ⊗Z R ∼= Rρ (58)

whose dimension is clearly ρ = rk(Pic(Y )), called the Picard number of Y.

Definition 4.2. A divisor D of Y is called nef (numerically effective) if any curve C in Y intersects
D non-negatively i.e.

(D · C) ≥ 0

Definition 4.3 (The closed Kähler cone). The closed Kähler cone K̄(Y ) of Y is the cone generated
in the Kleiman space H2(Y,R) by the classes of nef divisors.

Definition 4.4 (The closed Mori cone). The dual construction with respect to the perfect pairing

(·) : H2(Y,R) ⊗H2(Y,R) → R

induced by the intersection product, gives rise to the closed Mori cone NE(Y ).

Theorem 4.5 (Kleiman ampleness criterion [43]). A divisor D of Y (not necessarily neither
Calabi–Yau nor three-dimensional) is ample if and only if

∀Z ∈ NE(Y ) \ {0} (D · Z) > 0

Corollary 4.6. Let Y be Calabi–Yau variety. The interior K(Y ) of K̄(Y ) is the cone generated by
the Kähler classes in the Kleiman space H2(Y,R).

Proof. The criterion 4.5 ensures that K(Y ) is the cone generated by the classes of ample divisors
in H2(Y,R). A divisor is ample if and only if its fundamental form is positive, then D is ample if
and only if [D] ∈ H2(Y,R) is the class of a Kähler form, since the Calabi–Yau condition ensures
that H2(Y,C) ∼= H1,1(Y ). �
Theorem 4.7 (Of the Mori cone [50]). The negative part of NE(Y ) (Y not necessarily neither
Calabi–Yau nor three-dimensional) is rational and polyhedral i.e. there exists a collection {Ci}i∈I
of rational curves in Y such that

NE(Y )− := NE(Y ) ∩ {Z ∈ NE(Y )|(KY · Z) < 0} =
∑
i∈I

R≥0[Ci].

Theorem 4.8 (Of the Kähler cone [78,79]). Let Y be a Calabi–Yau three-fold and consider the
cubic cone in H2(Y,R) given by the cup-product

W∗ := {[D] ∈ H2(Y,R)|D3 = 0} (59)

(it is the cone projecting a cubic hypersurface W ⊂ P(H2(Y,R)) = P
ρ−1
R ). Then

W∗ ∩ K̄(Y ) ⊂ ∂K̄(Y ) (60)

and K̄(Y ) is locally polyhedral away from W∗. In particular ∂K̄(Y ) \W∗ is composed by codi-
mension 1 faces and their intersections.
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Remark 4.9. Relation (60) is an immediate consequence of the definition of K̄(Y ). In fact if there
exists [D] ∈ W∗ ∩ K(Y ) then D should be ample, implying that D3 > 0 and contradicting (59).

Remark 4.10. By Corollary 4.6, ∂K̄(Y ) ∩W∗ parameterizes all the possible degenerations of a
Kähler metric on Y (see [52, Section 3]).

4.2. Primitive contractions and primitive transitions

Definition 4.11. Let φ : Y → Ȳ be a birational contraction of a Calabi–Yau variety to a normal
one. φ is called primitive (or alternatively extremal, as explained in Remark 4.15(1)) if it cannot
be factored into birational morphisms of normal varieties. Any associated transition T (Y, Ȳ , Ỹ ) is
called a primitive (or extremal) transition.

Proposition 4.12 (Contractions by the Mori–Kähler cones point of view). There is a correspon-
dence

{φ : Y → Ȳcontraction fromCalabi–Yau to normal}
↔ (∂K̄(Y ) \W∗)Q ↔ (∂NE(Y ) ∩NE(Y )−)Q

where (·)Q means “rational points of”. In particular

φ is primitive ⇔ it corresponds to a class [D] in the interior of a codimension

1 face of K̄(Y )

⇔ it corresponds to a class generating an extremal ray of NE(Y )

Sketch of proof. Let H be a hyperplane section of Ȳ . Since Ȳ is normal we can assume

H ∩ Sing(Ȳ ) = ∅ (61)

Look at the pull-back φ∗H . The Kleinman criterion 4.5 ensures that

∀Z ∈ NE(Y ), (φ∗H · Z) ≥ 0

In particular, if E is the exceptional locus of φ, the projection formula and (61) give

(φ∗H · Z) = 0 ⇔ Z is the class of a curveC ⊂ E

Then (φ∗H ·) defines a hyperplane in H2(Y,R) cutting NE(Y ) along an extremal face. By duality
[φ∗H] generates a ray living in a codimension 1 face of the polyhedral part of the Kähler cone i.e.

R≥0[φ∗H] ⊂ ∂K̄(Y ) \W∗

Notice that the contraction φ can be factored into birational morphisms if there exists a curve C
in E and Z1, Z2 ∈ NE(Y ) such that

R≥0Z1 �= R≥0Z2 and [C] = Z1 + Z2 (62)

Hence

φ is primitive ⇔ ∀C ⊂ ER≥0[C] is the same extremal ray ofNE(Y )

⇔ R≥0[φ∗H]is not on the intersection of two codimension 1 faces of K̄(Y )

⇔ φ∗H is an interior point of an extremal codimension 1 face �
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Corollary 4.13. Let T (Y, Ȳ , Ỹ ) be a geometric transition andφ : Y → Ȳ the associated birational
contraction. Then φ can always be factored into a composite of a finite number of primitive
contractions.

Remark 4.14. The finiteness of the factorization process follows from the fact that any primitive
contraction reduces by 1 the Picard number.

Remark 4.15. The correspondence given in Proposition 4.12 from contraction morphisms and
rational points of the boundary of the Kähler cone is not a 1:1 correspondence. Actually all the
rational classes living in the interior of the same codimension 1 face of the K̄(Y ) correspond to
the same primitive birational contraction.

It is then possible to conclude that:

(1) there is a 1:1 correspondence between primitive contractions and either codimension 1 faces
of the Kähler cone K̄(Y ) or extremal rays of the Mori coneNE(X) ([79, Fact 1]); for this reason
primitive contractions (transitions) are also called extremal contractions (transitions) [51];

(2) there is a 1:1 correspondence between codimension r faces of the Kähler cone K̄(Y ) and
birational contractions from a Calabi–Yau three-fold to a normal variety composed by r
primitive contractions.

Theorem 4.16 (Classification of primitive contraction [79]). Let φ : Y → Ȳ be a primitive
contraction from a Calabi–Yau three-fold to a normal variety. Then one of the following is true:

type I : φ is small and the exceptional locus E is composed of finitely many rational curves;
type II : φ contracts a divisor down to a point; in this case E is irreducible and in particular it

is a (generalized) del Pezzo surface (see [59]);
type III : φ contracts a divisor down to a curve C; in this case E is still irreducible and it is a

conic bundle over a smooth curve C.

Definition 4.17 (Classification of primitive transitions). A transition T (Y, Ȳ , Ỹ ) is called of type
I, II or III if it is primitive and if the associated birational contraction φ : Y → Ȳ is of type I, II
or III, respectively.

4.3. Smoothing the target space Ȳ

Let us now consider the second point of the classification program given at the beginning of
the present section.

Let φ : Y → Ȳ be a birational contraction of a Calabi–Yau three-fold to a normal one. The
problem is to select all those contractions admitting a smoothable target space Ȳ .

To answer need to analyze the singularities of Ȳ and actually the geometry of the exceptional
locus of φ. Since this is a very hard (and almost completely open) problem for a general birational
contraction φ let us at first restrict to consider the case of primitive contractions, as classified by
Theorem 4.16.

4.3.1. Transitions of type I
φ is the contraction of E1, . . . , EN with Ei ∼= P1. Then:

(1) Ȳ has N isolated singularities pi = φ(Ei).
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(2) Reid proved that isolated singularities of this kind are actually compound Du Val (cDV)
singularities (see [60, Corollary (1.12)]) i.e. they admit local equation of the following type

f (x, y, z) + tg(x, y, z, t) = 0 in C4 (63)

wheref (x, y, z) = 0 is the local equation in C3 of a rational surface singularity (also known as
Du Val singularity, see [59,4]). Eq. (63) actually means that our three-dimensional singularity
reduces to a rational surface singularity on a suitable section.

(3) If Y is general (in its complex moduli space) such a singular point can be reduced to be an
ordinary double point (a node) i.e.

f (x, y, z) = x2 + y2 + z2 and g(x, y, z, t) = t

This fact follows from the following theorem.

Theorem 4.18 ([53, Theorem B; 55, Theorem 2.4; 54, Theorem 2.7; 36, Theorem 3.8]). Let Y
be a Calabi–Yau three-fold and supposeφ : Y → Ȳ is a birational contraction morphism such
that Ȳ has isolated, canonical, complete intersection singularities. Then there is a deformation
of Ȳ to a variety with at worst ordinary double points.

Remark 4.19. By the previous point (2) we simply may assume Y to admit isolated cDV
singular points which are, in particular, hypersurfaces singularities. Then for the present
purpose it suffices Theorem 2.4 of [55] to conclude.

Anyway we preferred to state Theorem 4.18 in the improved form given by Gross [36,
Theorem 3.8]for further applications in the case of more general transitions.

Remark 4.20. In [36, Corollary 3.10], Y may be also assumed to be Q-factorial (i.e.
rk(W(Y )/C(Y )) = 0, see Theorem 3.6) with terminal singularities. In fact, by results of
Namikawa and Steenbrink [55,53], in this case there are small deformations Y → ∆ and
Ȳ → ∆ of Y and Ȳ , respectively, such that the morphism φ : Y → Ȳ can be deformed to a
morphism ϕ : Y → Ȳ. In particular, for t �= 0,Yt is smooth and Ȳt still has isolated complete
intersection singularities but admits a crepant resolution ϕt : Yt → Ȳt . Then one applies
Theorem 4.18 to Ȳt .

(4) The last step is the following result essentially due to Friedman.

Theorem 4.21 (27,28,36 Theorem 5.1]). If φ : Y → Ȳ is of type I and Ȳ has at most ordinary
double points then Ȳ admits a Calabi–Yau smoothing Ỹ except for the case N = 1 (which is:
if φ contracts a single P1 to a node p then the germ (Ȳ , p) is rigid).

Sketch of proof. The key fact in proving the previous theorem is that the exceptional curves
E1, . . . , EN of φ must be homologically dependent in H2(Y,Z), since φ is a primitive con-
traction i.e. it is the contraction of a unique extremal ray R≥0[Ei] ⊂ NE(Y ). Then there is a
non-trivial linear dependence relation on [E1], . . . , [EN ], except forN = 1. Results of Fried-
man et al. conclude the proof (see [27, Remark 4.5; 28, Proposition 8.7; 72, Theorem 0.1; 54,
Theorem 2.5]). �
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Conclusion: If T (Y, Ȳ , Ỹ ) is a type I transition then the exceptional locus E is composed byN ≥ 2
rational curves. Moreover if Y is general then T is a conifold transition contractingN ≥ 2 rational
curves down to nodes.

In particular E can never be isomorphic to a single P1.

4.3.2. Transitions of type II
φ is the contraction of an irreducible divisor E which is a generalized del Pezzo surface.

Then:

(1) Ȳ has one singular point p = φ(E), which is a canonical singularity [59,61]. In particular the
exceptional surface E is either a normal del Pezzo surface of degree k ≤ 9 or a non-normal
del Pezzo surface as classified in [63] and it is rational for k ≥ 4. Moreover φ is a (weighted,
for k ≤ 2) blowing up of Ȳ at p.

(2) k = degE is the Reid’s invariant of the singularity p = φ(E). In particular we get that (see
[59], Proposition 2.9 and Corollary 2.10):
• k ≤ 2: then p is a hypersurface singularity whose local equation is known,
• k ≥ 3: then p is a singularity of multiplicity k and minimal embedding dimension

dim(mp/m2
p) = k + 1.

In particular, for k ≤ 4, p is a complete intersection singularity and, on the contrary, for k ≥ 5,
p is never a complete intersection singularity.

We can then apply Theorem 4.18 to conclude that there exists a smoothing Ỹ of Ȳ when E
is normal and degE ≤ 4, since p can never be a node.

(3) Normal rational del Pezzo surfaces E of degree k ≥ 5 are classified in [69]. In particu-
lar E is smoothable, meaning that the embedding E ↪→ Y can be deformed to an em-
bedding E′ ↪→ Y ′ where both E′ and Y ′ are smooth. When E is smooth p is analyti-
cally isomorphic to the vertex of a cone over E [36, Proposition 5.4]. The deformation
theory of a cone over a smooth del Pezzo surface of degree 5 ≤ k ≤ 9 is known and
precisely:
• k = 5: then p is a codimension 3 singularity and there exists a smoothing Ỹ of Ȳ since

locally Ȳ is a Pfaffian subscheme [44],
• 6 ≤ k ≤ 9: then the considered cones are toric varieties and by [1] we get:

◦ k = 6: then there are two distinct smoothings Ỹ given either by the generic hyperplane
section of a cone over P1 × P1 × P1 ⊂ P7 or by two generic hyperplane sections of a
cone over P2 × P2 ⊂ P8;

◦ k = 7: then there is a smoothing Ỹ given by the generic hyperplane section of a cone
over P3 blown up at a point, suitably embedded in P8;

◦ k = 8: then either E ∼= P1 × P1 and there exists a smoothing Ỹ given by the generic
hyperplane section of a cone over a suitably embedded P3, or E is the Hirzebruch surface
F1 := P(OP1 ⊕ OP1 (−1)) and (Ȳ , p) is rigid;

◦ k = 9: then E ∼= P2 and (Ȳ , p) is rigid (this case follows also by [64]).
(4) On the other hand E is a surface embedded in the smooth three-fold Y, which means that E

cannot admit non-hypersurface singularities. This fact gives significative constraints on the
non-normal case implying that:
• if E is non-normal then it is a suitable projection of a Hirzebruch surface Fa := P(OP1 ⊕

OP1 (−a)) having E3 = degE = 7 [36, Theorem 5.2]. In this particular case there exists
a smoothing Ỹ of Ȳ [36, Lemma 5.6].
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Conclusion: If T (Y, Ȳ , Ỹ ) is a type II transition then Y is the blow up of Ȳ at the singular point
and the exceptional divisor E is either a rational, normal, del Pezzo surface of degree k ≤ 8 or a
non-normal del Pezzo surface of degree 7. In the first case if

• k ≤ 3: then Ȳ has a hypersurface singularity,
• k = 4: then Ȳ has a complete intersection singularity,
• k = 5: then Ȳ is locally a Pfaffian subscheme,
• 6 ≤ k ≤ 8: then Ȳ is locally a cone over E admitting a toric structure.

In particular E can never be isomorphic to either P2 or F1 [36, Theorem 5.8].

4.3.3. Transitions of type III
φ is the contraction of an irreducible divisor E down to a smooth curve C ⊂ Ȳ . Then:

(1) C = Sing(Ȳ ) is a smooth curve of canonical singularities of Ȳ ; apply Theorem 2.2 of [59]
to conclude that C is entirely composed of cDV singular points since E is essentially the
only possible exceptional divisor of a crepant resolution of Ȳ and it gives a one-dimensional
fibration over C;

(2) the restriction φ|E : E → C exhibit E like a conic bundle over C, whose fibre is either a
smooth conic, a union of two lines meeting at a point, or a double line; in particular if the
general fibre is smooth then E is normal [79, Theorem 2.2], [80];

(3) let Ê be the normalization of E and f : Ê → Y the induced map; saying Def(f ) the de-
formations space of f like in [57] and Def(Y ) the Kuranishi space of Y, there is a natural
map

Def(f ) → Def(Y )

then: the genus of C is less or equal to the codimension of Im(Def(f ) → Def(Y )) [37, Propo-
sition 1.2];

(4) by the previous step: if g(C) ≥ 1 then there exists a smoothing Ỹ of Ȳ [37, Theorem 1.3]; in
fact there exists a deformation Y → ∆ of Y such that the exceptional divisor E do not deform
to general Yt , t ∈ ∆ since

codim(Im(Def(f ) → Def(Y ))) ≥ 1

the contraction φ yields a contraction Y → Ȳ, where Ȳ → ∆ is the deformation induced by
Y via the natural map Def(Y ) → Def(Ȳ ), which exists by [46, Proposition 11.4]; for general
t ∈ ∆ the contraction Yt → Ȳt is then of type I; by Section 4.3.1 there is a smoothing Ỹt of Ȳt
except when Sing(Ȳt) is composed by a unique ordinary double point; some more technical
consideration shows that the latter does not occur for general t;

(5) it remains to understand what happens when g(C) = 0 i.e. C ∼= P1; the goal is to construct
a deformation Ȳ → ∆ of Ȳ such that the image of the induced map ∆ → Def(Ȳ ) is not
contained in Im(Def(Y ) → Def(Ȳ )); if such a deformation exists then Ȳt has Q-factorial
terminal singularities for general t ∈ ∆ [37, Lemma 1.6]and by results of Namikawa and
Steenbrink [55] it suffices to guarantee the existence of a smoothing Ỹt of Ȳt ; to show the
existence of the deformation Ȳ needs a careful analysis of the structure of Def(Ȳ ) and of the
differential of the map Def(Y ) → Def(Ȳ ):
• ifE3 ≤ 6 the cokernel of the above differential has dimension ≥ 2; Def(Ȳ ) is smooth when
E3 ≤ 5; if E3 = 6 then Def(Ȳ ) may not be smooth but it is set-theoretically defined by at
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most one equation in a neighborhood of the origin of its tangent space; then the desired
deformation Ȳ → ∆ exists for E3 ≤ 6 [37, Theorem 1.7].

Conclusion: If T (Y, Ȳ , Ỹ ) is a transition of type III then the associated contraction φ fibres its
exceptional divisor E as a conic bundle over the smooth curve C = Sing(Ȳ ). Moreover C is a
locus of cDV singularities of Ȳ and either g(C) ≥ 1 or g(C) = 0 and degE ≤ 6.

In particular φ cannot fibre E as a conic bundle of degree 7 or 8 over P1 [37, Theorem 0.4].

4.3.4. What about a general transition?
The case of a general geometric transition T (Y, Ȳ , Ỹ ) is much more complicated than the case

of a primitive one, essentially for two reasons:

• the geometry of the exceptional locus E can be very intricate,
• Ȳ can then assume very general canonical singularities so that Def(Ȳ ) can be very singular and

the deformation theory of Ȳ very complicated.

Some partial result can be obtained from Theorem 4.18 or a generalization of it in the
case of non-complete intersection singularities (see [36, Definition 4.2 and Theorem 4.3]):
anyway Ȳ is assumed to be Q-factorial and only admitting (a particular kind) of isolated
singularities.

Moreover let us conclude by observing that, given a geometric transition

even the decomposition of φ in primitive contractions can be non-invariant with respect to defor-
mations of Y. In fact if φ factors through a transition of type III then the Kähler cone may jump
under deformation [79,80, Main Theorem; 53, Theorem C].

5. The Calabi–Yau web

5.1. Reid’s fantasy

An immediate consequence of Theorem 3.3 is that, starting from a given Calabi–Yau three-fold
Y, a conifold transition produce a topologically distinct Calabi–Yau three-fold Ỹ . Actually there
are plenty of topologically distinct well-known examples of Calabi–Yau three-folds and this fact
seems to definitely exclude the possibility of any kind of “irreducibility” for any more or less
defined concept of moduli space of Calabi–Yau three-folds.

This is something new with respect to what happens in the lower dimensional cases of elliptic
curves and K3 surfaces.

• Elliptic curves. Any one-dimensional compact complex manifold with KC ≡ 0 is biholomor-
phic to an algebraic smooth plane cubic curve, i.e. to a complex torus, and vice versa. In
particular their complex moduli space is the moduli space of complex structures over the topo-
logical torusS1 × S1. Such a moduli space is algebraic, smooth and irreducible (the well-known
modular curve).

• K3 surfaces (see [11,4]). The following facts were known to Enriques [25]:
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◦ ∀g ≥ 3 there exists a K3 surface of degree 2g− 2 in Pg; hence its sectional genus is g;
◦ ∀g ≥ 3 we can obtain a space Mg of complex projective moduli of such surfaces, by

imposing a polarization: Mg is an irreducible, analytic variety with dimCMg = 19;
◦ then the complex moduli space Malg of algebraic K3 surfaces is a reducible analytic variety

and it admits a countable number of irreducible components;
◦ there exist K3 surfaces belonging to more than one irreducible component of Malg; anyway

if we restrict to K3’s admitting Pic ∼= Z (they give the general element of any irreducible
component) then they belong to only one irreducible component.

What could appear to Enriques as a wildly reducible moduli space was explained by Kodaira
[45] as an analytic codimension 1 subvariety of a smooth, irreducible, analytic variety M.
More precisely:
• there exist analytic non-algebraic K3 surfaces,
• the Kuranishi space of any analytic K3 surface is smooth and of dimension 20.
The latter suffices to construct a smooth, irreducible, analytic universal family of K3 surfaces:
its base M is the complex analytic moduli space of K3 surfaces and dimCM = 20. Moreover
Malg turns out to be a dense subset of M.

In other words the irreducibility of the moduli space of K3’s is obtained by leaving the
algebraic geometric category to work in the larger category of compact, Kähler, analytic
manifolds. In fact any K3 surface is Kähler since all of them admit a canonical Ricci flat
Kähler–Einstein metric.

In [62] Reid suggested that the right approach to perceive some kind of irreducibility of a
suitable moduli space of Calabi–Yau three-folds could be similar to the case of K3 surfaces: one
has to work in the right category. The key idea is given by the following result of Friedman.

Theorem 5.1 ([27, Corollary 4.7]). Let φ : Y → Ȳ be a small contraction of a Calabi–Yau
three-fold Y to a normal three-fold Ȳ such that H2(Y ) is generated by the exceptional locus E of
φ and Sing(Ȳ ) is composed by N ≥ 2 nodes. Then Ȳ is smoothable and every smoothing Ỹ has
b2(Ỹ ) = 0. Hence Ȳ can be smoothed only to non-Kähler compact complex three-folds.

Corollary 5.2. There exist “non-Kähler Calabi–Yau” three-folds which can be realized, by means
of a conifold transition, starting from an algebraic Calabi–Yau three-fold Y as in Theorem 5.1.

Remark 5.3. There is an evident contradiction in the words non-Kähler Calabi–Yau since in
Definition 1.1 we assumed a projective embedding for Y. Anyway their meaning should be evident
as well and probably the reader will forgive such an abuse of notation!

A “Calabi–Yau” three-fold with second Betti number equal to zero has topological type completely
determined by the third Betti number. By results of Wall [76] this suffices to guarantee that it
is diffeomorphic to a connected sum (S3 × S3)#r of r copies of the solid hypertorus S3 × S3.
Introduce then the following assumptions.

Assumption 5.4. (1) Every projective Calabi–Yau three-fold Y is birational to a Calabi–Yau
three-fold Y ′ such that H2(Y ′) is generated by rational curves; moreover if φ : Y ′ → Ȳ is the
morphism contacting all them, then Ȳ is always smoothable. (2) The moduli space Nr of complex
structures on (S3 × S3)#r is irreducible.

Then we get the famous conjecture.

Conjecture 5.5 (The Reid’s fantasy). Up to some kind of inductive limit over r, the bira-
tional classes of projective Calabi–Yau three-folds can be fitted together, by means of geometric
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transitions, into one irreducible family parameterized by the moduli spaceN of complex structures
over suitable connected sum of copies of solid hypertori.

In fact if Y is a Calabi–Yau three-fold, by assumption (1) we can recover a birational Calabi–
Yau three-fold Y ′ admitting a small contraction morphism φ : Y ′ → Ȳ . Since φ is a composition
of a finite number of type I contractions, Section 4.3.1 guarantees that Ȳ admits at most a finite
number of isolated cDV singular points.

Then by Theorem 4.18, Ȳ can be deformed to a variety Ȳ ′ admitting at worst nodes as singular-
ities. Recalling Theorem 4.21, the second part of assumption (1) implies that either |Sing(Ȳ ′)| ≥ 2
or Ȳ ′ is smooth. In the first case Theorem 4.21, or equivalently Theorem 5.1, gives a smoothing Ỹ
of Ȳ ′. In the second case rename Ȳ ′ as Ỹ . In both cases Ỹ is a non-Kähler Calabi–Yau three-fold
since H2(Ỹ ) = 0. Then it is diffeomorphic to a connected sum of r copies of solid hypertori,
where r depends on the topology of Y. In fact, if in particular we make the further assumption that
Sing(Ȳ ) is composed only by nodes then the transition T (Y ′, Ȳ , Ỹ ) is a conifold one and Theorem
3.3 gives

r = b3(Ỹ )/2 = b3(Y ′)/2 + c = b3(Y ′)/2 +N − k

Assumption (1) implies that k = b2(Y ′) and thatN ≥ 2. The previous relation can be then rewritten
as follows:

b3(Y ′) − 2b2(Y ′) = 2r −N ≤ 2r − 2 (64)

Since Y and Y ′ are birational, their Betti numbers coincides.1 Then (64) can be rewritten, in terms
of the Euler–Poincaré characteristic of Y, as follows

r = 1 + N − χ(Y )

2
≥ 2 − χ(Y )/2 (65)

In conclusion, by means of a geometric transition, the birational equivalence class of the Calabi–
Yau three-fold Y determines a complex structure over (S3 × S3)#r, given by Ỹ and represented
by a point of Nr, for r � 0 according to (65). On the other hand, results stated in Section 3.1
ensure that the previous argument applies, with slight modifications, to any Calabi–Yau three-fold,
without the assumption that T is conifold.

The last step should be a sort of gluing of all the Nr’s preserving irreducibility postulated by
assumption (2) (to use Reid’s words: “let’s ignore this as a minor technical problem”).

Remark 5.6. The key point of the Reid’s fantasy is clearly the assumption (2): very little is
known about complex structures over solid hypertori and very few techniques are available in
dealing with compact complex non-Kähler manifolds!

Remark 5.7. The geometric beauty of the Reid’s fantasy 5.5 is given also by the evident analogies
with both the lower-dimensional cases of elliptic curves and of K3 surfaces. In fact as in the
last case, the irreducibility of the moduli space is recovered by means of particular geometric
transitions which actually are the right tools to leave the compact, Kähler category to work into

1 This is a famous result of Batyrev [6], obtained by employing p-adic integration and Weil conjectures. It seems that
this result motivated Kontsevich to introduce the theory of motivic integration in a memorable lecture at Orsay [47], in
which he proved that two birational Calabi–Yau varieties even have isomorphic Hodge structures. Actually, as explained
by Batyrev in the introduction of [6], the three-dimensional case, to which we are interested here, can be deduced by an
older result of Kawamata [42], since two birational minimal models of three-folds can be connected by a sequence of
flops.
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the larger category of compact, complex, analytic manifolds. On the other hand, as in the case of
elliptic curves, the moduli problem is reduced to parameterize complex structures over a sort of
“generalized tori”.

5.2. The “vacuum degeneracy problem” in string theory

The geometric transition’s property of connecting topologically distinct Calabi–Yau three-folds
and in particular the restored concept of a possible irreducible moduli space due to the Reid’s
Conjecture 5.5 suggested most interesting applications in string theory.

In fact Calabi–Yau three-folds play a fundamental role in 10-dimensional string theories:
locally four dimensions give rise to the usual Minkovsky space–time while the remaining six
dimensions (the so-called hidden dimensions for their microscopic extension, of the same order
as the Plank constant) are compactified to a geometric model which, essentially to preserve the
required supersymmetry, turns out to be a Calabi–Yau three-fold.

In spite of the fact that there are very few consistent 10-dimensional super-string theories,
actually near-unique via dualities, the compactification process give rise to the problem of choosing
the appropriate Calabi–Yau model: on one hand there is not any prescription for making a precise
choice and on the other hand there is a huge multitude of topologically distinct Calabi–Yau three-
folds. Moreover the choice of two distinct Calabi–Yau models is not “a priori” equivalent from the
physical point of view, since the second and the third Betti numbers (or better the Hodge numbers
h1,1 and h2,1) of the Calabi–Yau model are strictly related with the number of hypermultiplets
and the number of vector multiplets, respectively, of the compactified physical theory.

This is the so-called vacuum degeneracy problem in string theory.
The ideas of Clemens and then of Friedman and Reid, leading to the formulation of the Reid’s

fantasy in 1987 suggested to physicists like Candelas, Green, Hübsch and others that:

• Calabi–Yau three-folds could be, at least mathematically, connected each other by means of
geometric (conifold) transitions.

This is the so-called Calabi–Yau web conjecture described in many insightful papers starting
from 1988 (see [17,31,32,18,19]). A more precise version of this conjecture will be given later
following Gross (see 5.3).

In the previous statement mathematically means that the geometric (or eventually the conifold)
transition connecting each other two Calabi–Yau three-folds is merely a geometrical process: what
about the physical transition between the physical theories involved?

A first answer was given, for what concerning a conifold transition, in 1995 by Strominger
(see [68,34]). His explanation of how physical theories can pass smoothly through the conifold
singularities of the moduli space of Calabi–Yau string vacua was inspired by techniques of Seiberg
and Witten [66]: the idea is that the topological change is given by the condensation of massive
black holes to massless ones.

In the following years some other geometric transition, more general than the conifold one,
have been physically understood: see for example [12,41,13].

5.3. The connectedness conjecture

A mathematically refined version of the Calabi–Yau web conjecture was presented by Gross
[37].
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On the contrary of the K3 case for which an algebraic K3 surface can be smoothly de-
formed to a non-algebraic one, the deformation of a projective Calabi–Yau three-fold, even sin-
gular, is still projective. Since the hardest part of Conjecture 5.5 seems to be in dealing with
non-Kähler Calabi–Yau three-folds and in finding non-algebraic contractions, as observed in
Remark 5.6, one could skip this part by insisting on staying within the projective category as
follows.

One can think the nodes of the giant web predicted by the web conjecture as consisting
in deformation classes of Calabi–Yau three-folds. Two of such nodes, say M1 and M2, are
connected by an arrow M1 → M2 if the general element of M1 is connected with a smooth
element of M2 by means of a geometric transition, which means: for the general element Y of
M1 there exists a birational contraction to a normal three-fold φ : Y → Ȳ and a flat local family
Y → ∆ whose central fibre is Ȳ0 ∼= Ȳ and such that Ȳt is a smooth element of M2 for general
t ∈ ∆.

Example 5.8 (See also [37]). Let

• MQ be the moduli space of smooth quintic three-folds in P4,
• MD be the moduli space of double solids (i.e. double covers of P3) branching along a smooth

octic surface of P3,
• MT be the moduli space of smooth blow-up’s of quintic three-folds having a triple point.

Let Z be a general element in MT and φ : Z → Ȳ be the contraction of the exceptional divisor
of Z. Then Ȳ is a quintic three-fold in P4 with a triple point. Since Ȳ can be smoothed to a quintic
three-fold we have

MT → MQ (66)

by means of a primitive transition of type II.
On the other hand if we project Ȳ from the triple point po we get a rational morphism

ψ : Ȳ ��� P3

Proposition 5.9. The previous rational morphism ψ can be lifted to the blow up Z giving rise to
a generically finite morphism ψ̂ : Z → P3. More precisely ψ̂ is 2:1 except over 60 points {pi}
for which ψ̂−1(pi) ∼= P1. Consider the Stein factorization ψ̂ = f ◦ ϕ. Then we get the following
commutative diagram

(67)

where ϕ is the birational contraction of all of the 60 P1’s and f gives to X̄ the structure of a double
solid branched along a singular octic surface S ⊂ P3.

Since X̄ can immediately be smoothed by smoothing the branching locus S ⊂ P3 it is possible to
write

MT → MD (68)
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• Therefore the deformation familiesMQ,MT ,MD are nodes of the following connected graph
obtained by composing (66) and (68):

(69)

Proof of Proposition 5.8. The rational morphism ψ is defined as follows:

∀p ∈ Ȳ \ {po} ψ(p) := l(po, p) ∈ Lpo := {lines l of P4 throughpo} ∼= P3

where l(po, p) is the line connecting p and po. Since the domain Ȳ \ {po} of ψ coincides with the
locus of smooth points of Ȳ , ψ can be naturally lifted to a well defined morphism ψ̂ : Z → P3

by setting

∀q ∈ Z \ E ψ̂(q) = (ψ ◦ φ)(q), ∀q ∈ E ψ̂(q) = lq

where E is the exceptional locus of the blow up φ and lq is the tangent line to Ȳ in po determined
by the tangent direction represented by q ∈ E. The morphism ψ̂ is clearly generically 2:1 and the
image in Lpo ∼= P3 of the branching locus is given by

S := {lines l(po, p) which are tangent to Ȳ inp} ⊂ P3

S is a surface of degree 8. In fact locally the triple point po can be assumed to be the origin of
an affine subset C4 of P4. The local equation of Ȳ is then given by F5 + F4 + F3 = 0, where
Fd = Fd(x, y, z, w) is a generic homogeneous polynomial of degree d. If p = (xp, yp, zp,wp)
then l(po, p) is parameterized by

x = xpt, y = ypt, z = zpt, w = wpt

Therefore l(po, p) ∈ S if and only if

(F5 + F4 + F3)|l(po,p) = t3(at2 + bt + c)

where a, b, c are homogeneous polynomials in xp, yp, zp,wp of degree 5, 4, 3, respectively,
satisfying the further tangency condition

b2 − 4ac = 0 (70)

The latter gives a degree 8 homogeneous equation in P3(xp, yp, zp,wp) ∼= Lpo .
Observe that the 60 points {pi} described in Lpo by a = b = c = 0 are the images via ψ of the

lines contained in Ȳ . Hence ψ̂−1(pi) ∼= P1 while ψ̂ is 2:1 over P3 \ {pi}. The Stein factorization
ψ̂ = f ◦ ϕ is then the composition of the birational morphism ϕ contracting all of those P1’s and
of the 2:1 morphism f onto P3.

The situation is then described by the commutative diagram (67) where X̄ is a double covering of
P3 branched along the surface S. Since Eq. (70) of S gives Sing(S) = {a = b = c = 0}, X̄ admits
the 60 isolated singularities given by the images by ϕ of the contracted P1’s. The smoothing of X̄
is then given by the double solid branched along the generic surface of degree 8 in P3. �

Let us come back to the connected graph (69). Then the question is: can that graph be enlarged
to a very bigger graph connecting deformation classes of all simply connected Calabi–Yau three-
folds?
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Conjecture 5.10 (Of connectedness). The graph of simply connected Calabi–Yau three-folds is
connected.

Evidences for such a conjecture were firstly given in [32], where the moduli spaces of some
Calabi–Yau three-folds, which are complete intersections in products of projective spaces, were
connected each other.

Most significative evidences are given in [20] where a general procedure for connecting up
Calabi–Yau three-folds which are complete intersections in some toric variety, is described. Such a
procedure was developed starting from an original idea of Morrison and works by intersecting the
combinatorial toric data (i.e. reflexive polytopes) of two given Calabi–Yau three-folds, to produce
a further Calabi–Yau three-fold (if the so-obtained toric data give rise to a reflexive polytope too!).
The latter Calabi–Yau is then connected to the previous two, by means of geometric transitions.
By direct computer search, the authors checked that the procedure described allows to settle all
known examples of Calabi–Yau hypersurfaces in weighted P4 (7555 Calabi–Yau three-folds) into
a big connected graph. This result was actually already known to Candelas and collaborators, but
the new fact is that the third Calabi–Yau three-fold, obtained by intersecting the toric data of two
given Calabi–Yau weighted hypersurfaces, is not, in general, a weighted hypersurface but rather
a complete intersection in a more general toric variety. Which is: the graph connecting up all
the 7555 Calabi–Yau weighted hypersurfaces extends to englobe many complete intersections in
more general toric varieties.

Let us remark that, in general, the geometric transitions involved in the procedure described
above are not conifold. Hence such a big graph produces a mathematical link between deformation
classes of Calabi–Yau three-folds, leaving open the problem of a satisfying physical understanding
of the induced connection between string vacua.

6. Mirror symmetry and transitions: the reverse transition

A natural question arises from the previous connectedness Conjecture 5.10:

• is such a conjecture consistent with already known “connecting processes” between Calabi–
Yau string vacua suggested by physical dualities like e.g. mirror symmetry?

In a sense, a positive answer to this question represents a further evidence supporting the stated
conjecture.

6.1. Mirror symmetry conjecture: some mathematical statements

A description of physical origin and meaning of mirror symmetry conjecture is outside the scope
of this paper. In the following we will simply state some (minimal) mathematical consequences
useful to understand the role of geometric transition in this context. The reader interested in a
deeper understanding of the topic should consult the extensive monographs [74,22] and the recent
[39].

Conjecture 6.1 (Infinitesimal mirror symmetry). Let Y be a Calabi–Yau variety. Then there exists
a Calabi–Yau variety Y◦ and isomorphisms of complex vector spaces

∀ 0 ≤ p, q ≤ dimY µp,q : Hp(ΩqY )
∼=→Hp(Ωn−qY◦ ) (71)

inducing a mirror reversing identification on the Hodge diamonds of Y and Y◦.
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Remark 6.2. Since KY ∼= OY we get canonical isomorphisms

Hp(Ωn−qY ) ∼= Hp(∧qTY )

and the same for Y◦. Their composition with isomorphisms µp,q in (71) give rise to the following
isomorphisms

∀ 0 ≤ p, q ≤ dimY µ′
p,q : Hp(∧qTY )

∼=→Hp(ΩqY◦ ), µ′′
p,q : Hp(ΩqY )

∼=→Hp(∧qTY◦ )

and commutative diagrams

(72)

In particular if p = 1 = q then

µ′ := µ′
1,1 : H1(TY )

∼=→H1(ΩY◦ ) (73)

µ′′ := µ′′
1,1 : H1(ΩY )

∼=→H1(TY◦ ) (74)

6.1.1. The Calabi–Yau moduli space
To give a Calabi–Yau variety Y means in particular to fix a triple (Y, J, h) of a compact manifold

Y, a complex structure J on Y and a Hermitian metric h on Y whose real part gives a Ricci flat
Riemannian metric, and whose imaginary part gives a closed (1, 1)-form ω := −1/2 Imh (i.e. a
Kähler form) which is positive.

Think the complex moduli space MC
Y of (Y, J, h) as the space parameterizing all the deforma-

tions of the complex structure J over Y up to biholomorphisms. The Bogomolov–Tian–Todorov
theorem asserts that locally MC

Y is smooth (see [14,71,73] and also [58] for a more recent and
algebraic proof). Then:

• H1(TY ) can be canonically identified with the tangent space to MC
Y at the fixed complex

structure J.

On the other hand the Yau theorem solving the Calabi conjecture (see [16,82]) ensures that, for
any positive Kähler form ω such that [ω] ∈ H2(Y,R) ∩H1(ΩY ), there exists a unique Ricci flat
metric whose associated (1,1)-form is cohomologous to ω. Then Definition 4.3 and Corollary 4.6
imply that all the possible deformations of the Ricci flat, Kähler metric h on Y are parameterized
by the Kähler cone K(Y ). For this reason H1(ΩY ) can be thought as a complexification of the
tangent space to the Kähler moduli space of Y.

Moreover one can give a more natural meaning to H1(ΩY ) by constructing a complexified
Kähler moduli space as follows.

First of all observe that the mathematical datum of a given Calabi–Yau three-fold Y, which
is actually a triple (Y, J, h) with dimY = 3, do not completely characterize the physical string
theory compactified to Y. To do this an extra-datum, called the B-field, is needed. Physically it is
a characteristic parameter of the string action. Mathematically it is represented by the choice of
a lateral class β in the quotient H2(Y,R)/H2(Y,Z). One can then look at the complex class

χ := β + iω = β − i/2 Imh ∈ H2(Y,C)/H2(Y,Z)
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whereH2(Y,Z) acts naturally by inclusion, hence it acts only on the real part of a class inH2(Y,C),
as desired. The classχ is called the complexified Kähler class of the Calabi–Yau three-fold Y. It can
be actually thought as a polarization over the complex variety (Y, J) whose possible deformations
are then parameterized by the complexified Kähler space

KC(Y ) :=
{
χ ∈ H2(Y,C)| Imχ ∈ K(Y )

}
/H2(Y,Z).

The complexified Kähler moduli space MK
Y is then given by KC(Y ) up to the action of the

automorphisms group Aut(Y ) and

• H1(Y,ΩY ) is the tangent space to MK
Y at the fixed complexified Kähler class χ,

• the Calabi–Yau moduli space of a Calabi–Yau variety Y is then the total space of a fibration

MY → MC
Y (75)

whose fibre over the isomorphism class in MC
Y represented by (Y, J) is given by the complex-

ified Kähler moduli space MK
Y .

In particular, if dimY = 3, Wilson proved that, outside of a countable union of closed subsets of
MC

Y , the Kähler cone do not varies with the complex structure J (see [79,80]). That is enough to
conclude that:

• if dimY = 3 the fibration (75) is generically locally trivial, which means that if J is the complex
structure of a sufficiently general Calabi–Yau three-fold Y then there exists a Zariski open subset
U ⊂ MC

Y containing the class represented by (Y, J) and such that MY |U ∼= U × MK
Y .

Conjecture 6.1 can then be understood as the differential version of the following one.

Conjecture 6.3 (Local mirror symmetry for Calabi–Yau three-fold). Let (Y, χ) be the polarized
couple given by a general Calabi–Yau three-fold Y = (Y, J, h) and a complexified Kähler class
χ ∈ KC(Y ) such that Imχ = −1/2 Imh. Then there exist:

(1) a mirror polarized couple (Y◦, χ◦), where Y◦ = (Y◦, J◦, h◦) is a sufficiently general Calabi–
Yau three-fold and χ◦ ∈ KC(Y◦) is such that Imχ◦ = −1/2 Imh◦,

(2) two open subsets U ⊂ MY ,U◦ ⊂ MY◦ containing the isomorphisms classes represented by
(Y, χ) and (Y◦, χ◦), respectively; notice that they inherits the local product structure of MY

and MY◦ i.e.

U ∼= UC × UK, U◦ ∼= U◦
C × U◦

K

(3) a biholomorphism m : U → U◦, called local mirror map, reversing the product structures,
which is

m(UC) = U◦
K, m(UK) = U◦

C

whose differential gives maps µ′ and µ′′ in (73), i.e.

d(J,χ)(m) = µ′ × µ′′
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Remark 6.4 (Mirror partners of rigid Calabi–Yau varieties). Let Y be a rigid Calabi–Yau variety
i.e. Y do not admits complex deformations and

h1(TY ) = h2,1(Y ) = 0 (76)

Assume Y◦ to be a mirror partner of Y . Then Conjecture 6.1 gives

h1,1(Y◦) = h2,1(Y ) = 0 (77)

which implies that Y◦ cannot be a Kähler variety: in particular Y◦ is not a Calabi–Yau variety.
Since rigid Calabi–Yau three-folds exist (the first examples were constructed in 1986 by Schoen

[65]) this fact introduces a counterexample to both the stated mirror symmetry Conjectures 6.1
and 6.3.

From the mathematical point of view, such a contradiction could be resolved by assuming
mirror symmetry to involve some non-Kähler Calabi–Yau variety too (recall Remark 5.6): but
which of them?

Anyway, from the physical point of view, it is completely unclear which kind of string theory
can be compactified to a non-Kähler Calabi–Yau three-fold: so what is the mirror dual of a string
theory compactified to a rigid Calabi–Yau vacuum?

6.2. The reverse transition

Consider a transition T (Y, Ȳ , Ỹ ) and let Y◦ and Ỹ◦ be mirror partners of Y and Ỹ , respectively:

(78)

Recall that mirror symmetry exchange complex moduli with Kähler moduli. On the other hand,
if T is a conifold transition, point (3) of Theorem 3.3 and Remark 3.5 allow to conclude that the
topologies of Y◦ and Ỹ◦ are compatible with a (reverse) conifold transition T ◦(Ỹ◦, Ȳ◦, Y◦) which
would complete diagram (78) as follows

(79)

Notice that the reverse conifold transition T ◦ would have the same parametersN, k, c as T whose
role is now reversed. Precisely

• Sing(Ȳ◦) would be composed by N ordinary double points, just like Sing(Ȳ ),
• the exceptional locus of the birational contraction φ◦ would be composed byN rational curves

whose homology classes span a c-dimensional subspace of H2(Ỹ◦),
• the vanishing locus of the smoothing Y◦ would be given by N three-spheres whose homology

classes span a k-dimensional subspace of H3(Y◦).
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A similar picture naturally suggested that a diagram like (79) could be established for every
geometric transition T, leading to the following conjecture, probably due to Morrison.

Conjecture 6.5 (Of reverse transition, see [51,34,20,48]). LetT (Y, Ȳ , Ỹ ) be a geometric transition
and let Y◦ and Ỹ◦ be mirror partners of Y and Ỹ , respectively. Then mirror partners are linked
by a reverse geometric transition T ◦(Ỹ◦, Ȳ◦, Y◦) like in diagram (79).

In [51] Morrison supported such a conjecture with an example employing the Greene–Plesser
construction [33] to produce mirror partners of the geometric transition linking a desingularization
of an octic weighted hypersurface of P(1, 1, 2, 2, 2) with the generic complete intersection of bi-
degree (2, 4) in P5.

Further evidences were given in [8] where the reverse transition of a conifold transition, linking
a complete intersection in a Grassmannian with a complete intersection in a Fano toric variety,
is produced: in particular the reverse transition is still conifold. This fact suggests to specialize
Conjecture 6.5 as follows.

Conjecture 6.6. Let T (Y, Ȳ , Ỹ ) be a conifold transition. Then there exist mirror partners Y◦ and
Ỹ◦ of Y and Ỹ and a reverse transition T ◦(Ỹ◦, Ȳ◦, Y◦) which is still conifold.

Such a conjecture seems to be natural when we look at the role played by parameters N, k, c.
Anyway in [41] examples of geometric non-conifold transitionsT (Y, Ȳ , Ỹ ), which can be deformed
to conifold transitions, are produced. More precisely the birational contraction φ : Y → Ȳ is a
composition of type III birational contractions whose exceptional divisors E1, . . . , Ek are con-
tracted down to a unique smooth irreducible curve C of compound Du Val singularities of type
cAk. Examples given in [41] are three-dimensional hypersurfaces or complete intersections in
weighted projective spaces where birational contractions φ’s are induced by morphisms globally
defined between the weighted projective spaces. For each example a non-toric deformation direc-
tion for Y is exhibited, producing a deformation φ′ : Y ′ → Ȳ ′ of φ which is now a small birational
contraction (a composition of type I contractions). Moreover Sing(Ȳ ′) turns out to be composed
only by nodes. Then T deforms to a conifold transition T ′(Y ′, Ȳ ′, Ỹ ) as follows:

(80)

In particular E1, . . . , Ek are deformed to(
k + 1

2

)

collections of 2g− 2 homologous rational curves in Y ′, where g is the genus of C, and C is
deformed to

N =
(
k + 1

2

)
(2g− 2)
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nodes in Ȳ ′. Since E1, . . . , Ek span a k-dimensional subspace of H4(Y ), the N rational curves in
Y ′ span a k-dimensional subspace ofH2(Y ′). Setting c = N − k one can then recover parameters
N, k, c for the given non-conifold transition T. If T ′ admits a reverse conifold transition T ′◦ (of
parameters N, c, k), as Conjecture 6.6 predicts, then the latter admits also T as reverse transition.
Therefore:

• it can happen that a conifold transition of parameters N, k, c admits a non-conifold reverse
transition whose birational morphism contracts c exceptional divisors down to a smooth irre-
ducible curve of genus

g = 1 + N

2

(
c + 1

2

)

This fact do not contradicts Conjecture 6.6 if the following one is true.

Conjecture 6.7. A geometric transition T (Y, Ȳ , Ỹ ) satisfying some good condition (e.g. such that
φ contracts k exceptional divisors down to a smooth curve of genus g > 1 whose points are cAk
singularities) can be deformed to a conifold transition T ′(Y ′, Ȳ ′, Ỹ ) like in diagram (80).

6.3. Toric degenerations: conifold transitions to construct mirror manifolds

Methods in [8] were generalized in [9] to complete intersections in partial flag manifolds
giving a conjectural approach to produce examples verifying Conjecture 6.6. On the other hand
their method describes a conjectural procedure to generalize the mirror construction for Calabi–
Yau complete intersections in toric Fano varieties, given in [5,10,15], to the case of Calabi–Yau
complete intersections in non-toric Fano varieties. A further generalization of this construction
is given in [7]. Main ideas are the following.

Definition 6.8 ([7, Definition 3.1]). Let X ⊂ Pm be a smooth Fano variety of dimension n. A
normal Gorenstein toric Fano vareity P ⊂ Pm is called a small toric degeneration of X, if there
exists a Zariski open neighborhood U of 0 ∈ C and an irreducible subvariety X ⊂ Pm × U such
that the morphism π : X → U is flat and the following conditions hold:

(1) the fibre Xt := π−1(t) ⊂ Pm is smooth for all t ∈ U \ {0};
(2) the special fibreX0 := π−1(0) ⊂ Pm has at worst Gorenstein terminal singularities andX0 ∼=

P ;
(3) the canonical homomorphism Pic(X/U) → Pic(Xt) is an isomorphism for all t ∈ U.

Example 6.9.

(1) In [8] it is shown that the Grassmannian X := G(r, s), embedded in P

(
s

r

)
−1

by the usual

Plücker embedding, admits a small toric degeneration P := P(r, s) ⊂ P

(
s

r

)
−1

.
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(2) In [9] it is proved that the partial flag manifold X := F (n1, . . . , nk, n) with its Plücker em-
bedding in Pm admits a small toric degeneration P ⊂ Pm.

(3) In [7] the toric hypersurface P, given by the following homogeneous equation of degree d in
Pn

z1 · · · zd = zd+1 · · · z2d

where n ≥ 2d − 2, is proved to be a small toric degeneration of the generic smooth Fano
hypersurface X of degree d in Pn.

Remark 6.10. For all the previous examples, SingP has codimension at least 3. Moreover the
codimension 3 part of SingP consists of ordinary double points.

Let now H be a generic complete intersection in Pm cutting on a smooth Fano varietyX ⊂ Pm a
smooth Calabi–Yau variety Y. If X admits a small toric degenerationP ⊂ Pm and Ȳ := H ∩ P then
Sing Ȳ has codimension at least 3. In particular if dimY = 3 = dim Ȳ then Sing Ȳ consists only
of isolated nodes. Let P̂ be a simultaneous desingularization of P given by a suitable subdivision
of the fan associated with P. Then the birational morphism P̂ → P induces a desingularization
Ŷ → Y . We have then a geometric transition T (Ŷ , Ȳ , Y ) which is conifold when dimY = 3

The mirror partner of Ŷ given by the construction of [10,15], is a complete intersection Ŷ◦ in the
dual Fano toric variety P̂◦ obtained by polarity on associate polytopes. The main point is that the
embedding PicP ↪→ Pic P̂ suggests, via monomial-divisor correspondence [3], a canonical way
to specialize Ŷ◦ to a singular Ȳ◦. Let Y◦ → Ȳ◦ be a minimal desingularization. The situation is
then the following

and Y◦ is conjectured to be a mirror partner of Y and T ◦ be a reverse transition of T. In particular
for all the given three-dimensional examples verifying this conjecture (see [8]) T ◦ turns out to be
a conifold transition like T.

6.4. Mirror partners of rigid Calabi–Yau three-folds via geometric transitions

Let Y be a rigid Calabi–Yau three-fold as in Remark 6.4. At least from the mathematical point
of view, the reverse transition Conjecture 6.5 gives an answer to which non-Kähler Calabi–Yau
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three-fold Y◦ should be a mirror partner of Y. In fact

• if there exists a geometric transition T (Y, Ȳ , Ỹ ) then h2,1(Ỹ ) > h2,1(Y ) = 0, since Ỹ cannot be
rigid,

• let Ỹ◦ be a mirror partner of Ỹ and T ◦(Ỹ◦, Ȳ◦, Y◦) be a reverse transition of T ,
• then Y◦ should be a mirror partner of Y like in diagram (79).

If T and T ◦ are both conifold then, from the physical point of view, the previous procedure
suggests that the mirror dual of a string theory compactified to a rigid Calabi–Yau three-fold can
be obtained by a suitable composition of black hole condensations and mirror symmetry (over
non-rigid Calabi–Yau three-folds).

7. Further physical dualities and transitions

The local conifold transition

(81)

studied in Section 2, has been recently considered as the geometric set up of a new conjectured
open/closed string duality.

More precisely, at the beginning, in 1974, t’Hooft conjectured that large N gauge theories
are dual to closed string theories [70]. Later, in 1992, Witten showed that a particular kind of
gauge theory, namely a SU(N) (or U(N)) Chern–Simons gauge theory on the three-sphere S3,
is equivalent to an open string theory on T ∗S3 with D-branes wrapped on S3 [81]. In 1998,
Gopakumar and Vafa conjectured that, for large N, a SU(N)(U(N)) Chern–Simons gauge theory
is dual to a closed string theory “compactified” to the local Calabi–Yau three-fold OP1 (−1) ⊕
OP1 (−1) [29,56]. Composing all these dualities gives an open/closed string duality modelled on
the local conifold transition (81). For all the details, the interested reader is referred to original
papers, and to [30] for a survey on these topics and more references.

The concept of reverse transition, introduced in the previous section, applied to such an
open/closed string duality, suggests a further duality on the mirror theories. This was proposed in
[2].

Examples of similar dualities, geometrically realized by less elementary conifold transitions
than (81), are given in [23]. A reverse transition of one of them is described in the recent paper
[26].
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[78] P.M.H. Wilson, Calabi–Yau manifolds with large Picard number, Invent. Math. 98 (1989) 139–155.
[79] P.M.H. Wilson, The Kähler cone on Calabi–Yau threefolds, Invent. Math. 107 (1992) 561–583.
[80] P.M.H. Wilson, Erratum to “The Kähler cone on Calabi–Yau threefolds”, Invent. Math. 114 (1993) 231–233.
[81] E. Witten, Chern–Simons gauge theory as a string theory, in: The Floer Memorial Volume, Birkhäuser, 1995, pp.
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